崋山会·上海市日本研究交流協会·上海交通大学共催Symposium March 27, 2003

Japan – China Cooperation in Environmental Field

Mitsutsune YAMAGUCHI Professor of Economics, Keio University

Environmental Issues in China

1) Economic Growth, Environmental Protection and Stable Energy Supply

Economic Growth will be adversely affected by pollution (World Bank Report &c.)

2) To cope with 3 environmental issues simultaneously

Industrial Pollution, Urban Pollution and Global Issues (Climate Change)

Japan – China Cooperation in the field of Environmental Protection

- Resource (human, capital and technology) Transfer through
 - ODA, OOF, Local G. and Private Sectors
- For Industrial Pollution→SOx, Soot
- For Urban Pollution \rightarrow NOx, Waste M.
- For Climate Change $\rightarrow C$

→Capacity Building

Ideal Cooperation between two countries

- Projects that contribute both
- 1) To Reduce SOx Emissions
- 2) To limit CO2 Emissions

Fuel switching to natural gas is the best way However, two points to be considered Cost and Availability

How to cope with the situation?

• Short-term

Improving Energy Efficiency to cope with Industrial Pollution and Climate Change Three-way converter of automobile for NOx Bilateral cooperation of waste management

Long-term
 Fuel switching
 Renewable Energy

Importance of Developing Countries Climate Change

Source IEA World Energy Outlook 2002

China's Energy-origin CO2 Emissions Second biggest emitter

	2000	2010	2020
World	22,639	27,453	32,728
Total	Mt	Mt	Mt
China	3,052	4,155	5,393
Ratio	13.5%	15.1%	16.5%

Source, IEA World Energy Outlook 2002

Importance of Clean Development Mechanism (CDM)

- What is CDM
- Only mechanism Developed and Developing Countries can cooperate to cope with Climate Change
- To enhance Technology Transfer
- Restrictions

No nuclear Energy

No diversion of ODA for CDM projects

 $(\rightarrow ODA \text{ for Capacity building})$

China and International Cooperation on CDM

- World Bank/GTZ
- Asian Development Bank
- Canada
- The Netherlands
- GEF
- Keio University Project

Characteristics of our Project

- To find out the most cost effective projects
- To find out the most feasible projects
- Based on precise and detailed data

1) Power Plant (energy efficiency improvement)

- 2) Iron and Steel
- 3) Paper and Pulp
- 4) Cement
- 5) Chemical

Methodology

- To estimate CDM potential (reduction of CO2 emission)
- To estimate reduction cost per ton of CO2

Example: CDM project in Power Plant

Coal remains predominant in China's power generation

Source, IEA World Energy Outlook 2002

Classify into three categories

- 50 MW units \rightarrow Scrap & build
- 100/200 MW units \rightarrow Modification
- 300MW and over \rightarrow No project
- 66 out of 159 units in the Northern China Region were selected as having CDM potential
- Select model plants
- Then expand to whole China area

Selection of Model Plants

	Unit Capacity	Model Plant	
Gruop1 Scrap & Build option	50MW	Shanxi, Taiyuan No.2 Electric & Thermal Power Station 50MW * 4	
Group2 Improvement of	100MW	Inner Mongolia, Haibowan Electric Power Station 100MW*2	
option	200MW	Inner Mongolia, Huaneng Fengzhen Electric & Thermal Power Station 200MW*6	

Estimation of CO2 reduction

- Estimation of baseline emission
- Calculation of thermal efficiency improvement
- Calculation of CO2 emission reduction potential in Northern China Region (Hebei, Shangxi and Inner Mongolia)
- Estimation of China's total emission reduction potential for power plant CDM project

Summary of CDM potential and cost in Northern China Region

	50MW	100MW	200MW	Total
Total capacity of the targeted units (MW)	1,000	2,000	5,200	8,200
CO ₂ emission reduction (1000t/y)	2,142	524	1,2 7 0	3,936
Total investment (million \$)	131.5	175.8	397.8	705.1

ear

CO2 reduction cost by CDM

• CO₂ reduction cost, expressed in terms of CDM project cost per unit reduction of CO₂, can be calculated as follows:

$$\frac{\left[\sum_{i=1}^{n} \frac{\left(EC_{i} - EB_{i}\right)}{\left(1+r\right)^{i}} + I_{0}\right]}{\sum_{i=1}^{n} Y_{i}}$$

- where Y_i is CO₂ reduction in the year *i*.
- where $(EC_i EB_i)$ is the saved fuel cost in the year *i*.

Cost comparison (coal and gas) Tentative, do not quote

- Energy efficiency improvement projects
 ¥913 ¥3,109 (project period 7 years)
 ¥275 ¥1,399 (do- 14 years)
- Fuel switching project to Natural Gas
 ¥6,797 (project period 7 years)
 ¥4,569 (do 14 years)
- Market Price

CDM potential in China

Sectors	Reduction Potential
Dowor Dlopt	
Power Plain	28
Iron & Steel	6
Paper & Pulp	0.4 – 1.2
Cement	14
Chemical	9

Tentative, do not quote

How to promote CDM projects

- Capacity building

 Sustainable Development Partnership
 Type 2
 Asia Capacity Building Initiative by Japan
 through institutional streamlining, dissemination of
 knowledge and expertise, national strategies etc.
- Find out prospective investors

Conclusion

- Competition among developed countries
- Competition among developing countries

• To materialize "Win – Win" situation